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Topological Symmetry of the Bosonic String
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We exhibit the topological symmetry of the bosonic string in the framework of
the BRST formalism. To get the Slavnov–Taylor symmetry independent of the
diffeomorphism one, we extend the latter by introducing an antiderivation. Then
on the functional space, we establish that the antiderivation, the Slavnov–Taylor,
and the extended Ward operators generate a supersymmetric invariance of the
bosonic string.

1. INTRODUCTION

Topological field theories form a class of gauge models with the peculiar-
ity that their observables are of topological nature, for instance, knot and
link invariants in the case of three-dimensional Chern–Simons theory [1],
Donaldson invariants for the four-dimensional topological Yang–Mills mod-
els [2], and many other examples [3]. Indeed, expectation values of physical
observables do not vary under smooth deformations of the metric that one
puts on the base manifold, and under deformations of the coupling constants
that appear in the theory [3, 4]. In fact, in their original formulation, topologi-
cal field theories were constructed to have the global symmetry that arises
as the BRST symmetry of an appropriate quantum field theory with different
gauge choices, and then to be specific gauge fixings for a higher theory.

Topological field models are classified into two types:
1. Witten-type theories, for which the complete quantum action Sq , the

classical action plus all necessary gauge-fixing and ghost terms, is BRST-
exact, i.e.,
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1973
0020-7748/00/0800-1973$18.00/0 q 2000 Plenum Publishing Corporation



1974 Kachkachi, Dafounansou, and Nazah

Sq 5 {Q, V} (1.1)

for some functional V(F, g) of the fields, and Q is the nilpotent (and, in
general, metric independent) BRST charge [2]. For every field there is a
superpartner with the same spin, but with opposite Grassmann charge.

2. Schwarz-type topological models, which are characterized by a metric-
independent, nontrivial, classical action SC(F). Upon gauge fixing, the total
action (in certain cases) takes the form

Sq(F, g) 5 SC(F) 1 {Q, V(F, g)} (1.2)

As the energy-momentum tensor Tab is defined by the change in the action
under an infinitesimal deformation of the metric

dgSq 5 1/2 #
S

d mx !gdgabTab (1.3)

from equations (1.1) and (1.2) we get for the energy-momentum tensor the
following expression for the two types of topological models:

Tab 5 HQ, 2/!g
dV

dgabJ (1.4)

In particular, a quantum field theory constructed from a Riemann surface S
alone, using neither complex structure nor metric, is a topological quantum
field theory. Without a metric there are no distance measurements or forces
and so no conventional dynamics. The Hamiltonian of the theory has only
zero eigenstates. However, the nontriviality of the model is reflected in the
existence of tunneling between vacua.

String theory (and its supersymmetric version) has led to a large number
of fruitful applications such as developments in conformal field theories and
in lower dimensional gravity [5].

In analogy with topological field theories, the bosonic string is considered
as a gauge theory for the group (Diff 3 Weyl), Diff and Weyl denoting,
respectively, the diffeomorphisms and the Weyl-scale transformations.

In this paper, we exhibit the topological nature of the bosonic string
first-quantized, as a gauge theory, in the framework of the BRST formalism.
Indeed, we show that this symmetry is apparent, in the conformal gauge, at
the level of separation of the Slavnov–Taylor symmetry from the diffeom-
orphism one. We establish that the generators of this topological symmetry
are identified with the linearized Slavnov–Taylor operator, the representative,
on the functional space, of an antiderivation, and with the Ward operator of
extended diffeomorphisims. Then we recover the supersymmetric algebra
introduced in ref. 6 by considering the z and z components of the above
operators.
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The so-called Beltrami parametrization of the two-dimensional world
sheet metric of the bosonic string introduced in refs. 7 and 8 turns out to be
quite useful for describing the string properties within the perturbative field-
theoretical framework. It allows the use of a quantization procedure com-
pletely analogous to the Yang–Mills theories. Moreover, the Beltrami parame-
trization is the most natural parametrization which exhibits the holomorphic
factorization of the Green functions with insertion of the energy-momentum
tensor, according to the Belavin–Polyakov–Zamolodchikov scheme [9].
Indeed, the Beltrami parameter can be seen as the classical source for the
(Tzz, Tzz) components of the energy-momentum tensor. It turns out that the
Slavnov–Taylor identity corresponding to the BRST invariance of the theory
can be taken as the starting point for algebraic characterization of the energy-
momentum current algebra.

Also, the use of the Beltrami parameter allows one to eliminate from
the very beginning the Weyl symmetry degree of feedom, the remaining
diffeomorphism transformations being kept as the basic local invariance of
the string action [7]. However, it is well known that diffeomorphism invari-
ance cannot be preserved at the quantum level. There is indeed an anomaly
whose numerical coefficient is nonzero, and its presence implies the existence
of unphysical negative norm states in the Fock space of the string excitations
[5]. A consistent theory requires the vanishing of this coefficient, which
implies that the target space of the bosonic string is a 26-dimensional space-
time [10].

2. THE BELTRAMI PARAMETRIZATION OF THE BOSONIC
STRING

In its Euclidean version the bosonic string is described by the classi-
cal action

Sinv(X, g) 5 1/2 #
S

d 2x !ggab ­aX­bX (2.1)

where gab (a, b 5 1, 2) is a metric on the two-dimensional Riemannian
manifold S that is the string world sheet. X 5 (X i, i 5 1, . . . , D) are the
string coordinates which map S into the D-dimensional flat space RD; X i:
S → RD and (x1, x2) are coordinates of the surface S.

Conformal classes of the metric on the Riemann surface S are parame-
trized by Beltrami differentials m satisfying SupS.m. , 1 [11–13]. If we
consider a reference complex structure on S parametrized by a complex
coordinate system (z, z), the conformal class of the metric g is characterized by
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ds2 5 gab dxa dxb 5 r2.dz 1 mdz.2 (2.2)

where r(z, z) is the conformal factor.
In this framework the action (2.1) becomes

Sinv(X, m, m) 5 1/2 #
S

dm1 1
1 2 mm2(­ 2 m­)X(­ 2 m­)X (2.3)

with

dm [ dz ` dz/2i, ­ [ ­/­z, ­ [ ­/­z

As mentioned in the Introduction and as one can observe, the scaling factor
of (2.2) has been eliminated from the new form (2.3) of the action. Indeed,
due to the Weyl invariance [g(x) → ew(x)g(x)], Sinv depends only on a conformal
class of the metric that is parametrized by the Beltrami differential m. Also,
the action (2.3) describes a conformal theory of a scalar field X that is RD-
valued and is invariant under the group Diff0(S), the group of the diffeomorph-
isms on the Riemann surface S, which are related to the identity [11]. This
invariance is expressed in the BRST formulation by the structure equations

sX 5 (c ? ­)X

sm 5 (­ 2 m­ 1 ­m)C (2.4)

sC 5 C­C

and

c.c.

with

s2 5 0 (2.5)

C 5 c 1 mc

(c, c) are the anticommuting ghost variables corresponding to two diffeom-
orphism variables. At this level, the exterior fields m and m are considered
as quantum fields coupled to the string quantum field X and describe all
possible analytic structures defined on S on which we should integrate to
get the Polyakov formulation of string theories [10].

In order to fix the gauge, we introduce a pair of antighosts (b, b) and
of Lagrange multipliers (b, b) transforming under BRST as
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sb 5 b (2.6)

sb 5 0

and

c.c.

In the Landau conformal gauge, i.e.,

m 5 m0 (2.7)

where m0 is a classical prescribed Beltrami differential left invariant by the
BRST operator, that is,

sm0 5 0 (2.8)

the gauge-fixing action reads

Sgf (m, b, C, m0, b) 5 #
S

dm [2b(m 2 m0) 1 bsm 1 c.c.] (2.9)

Then, one can verify that the effective action defined by

Seff 5 Sinv 1 Sgf (2.10)

is BRST-invariant:

sSeff 5 0 (2.11)

Moreover, if the auxiliary field b is eliminated by its equation of motion
(2.7), which amounts to replacing everywhere the original Beltrami parameter
with the classical one m0 (which will be considered next), Eq. (2.11) holds
such that

sb 5 0 (2.12)

As usual, coupling the nonlinear BRST variations of (X, C, C) to invariant
external sources (Xs , Cs , Cs)

Sext 5 #
S

dm (XssX 1 CssC 1 CssC) (2.13)

and using the algebraic property

sm 5 dSeff /db (2.14)

gives the Slavnov–Taylor identity

S1Stot 5 0 (2.15)

where Stot 5 Seff 1 Sext is the total classical action and S1 is the extended
BRST operator to the sources and represents the Slavnov–Taylor operator:
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S1 5 #
S

dm1dStot

dXs

d
dX

1
dStot

dX
d

dXs
1

dStot

dm
d
db

1
dStot

db
d

dm

1
dStot

dCs

d
dC

1
dStot

dC
d

dCs
1 c.c.2 (2.16)

One can verify that S1 is nilpotent

S 1
2 5 0 (2.17)

and its action on the fields and on the sources is given by

S1X 5 sX 5
dSext

dXs

S1Xs 5 ­a(caXs) 5
dSext

dX
(2.18)

S1C 5
dStot

dCs
5 C­C

S1Cs 5
dStot

dC
5 (C­C 1 2­C )Cs 1 (­ 2 m­ 2 2­m)b 2 Xs

­ 2 m­

1 2 mm
X

S1b 5
d(Sgf 1 Sext)

dm
5 (C­C 1 2­C )b 1

C 2 mC
1 2 mm

X

S1m 5
dStot

db
5 sm

and

c.c.

The classical total action Stot can be seen as describing the propagation
of the quantized fields (X, C, C, b, b) in a nontrivial classical background
metric whose components are parametrized by m. Moreover, the classical
Slavnov–Taylor identity is taken to be the starting point of the analysis of
the quantum aspects of the model.

Before going any further, let us stress that the effective action is invariant
under infinitesimal diffeomorphisms whose action on the fields is given
by [11]

djX 5 (jz 1 jz­)X (2.19)

djm 5 (­ 2 m­ 1 ­m)(jz 1 mjz)

djC 5 (jz­ 1 jz­ 2 ­jz 2 m­jz)C
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djb 5 (jz­ 1 jz­ 1 2­jz 1 2m­jz)b

and

c.c.

where (jz, jz) are the diffeomorphism parameters and satisfy the following
Lie algebra:

[dj, dj8] 5 d[j,j8]D0
(2.20)

with D0 the Lie algebra of the group Diff0(S).
Let us stress that the closure relation

[dj, S1] 5 0 (2.21)

is not satisfied on all the fields:

[dj, S1]b 5 2­jzbsm (2.22)

and the diffeomorphism variations of the BRST sources Xs and Cs are not
defined. Then, the two symmetries characterizing the classical total action
cannot be considered independent at the quantum level. To overcome this
problem, we have to replace the diffeomorphism dj by another extended one
(to the sources), Dj defined by

DjX 5 djX

DjXs 5 ­a(jaXs)

Djm 5 djm (2.23a)

DjC 5 djC

Djb 5 djb 2 ­jzCsC

DjCs 5 ­a(jaCs) 1 Cs(­jz 1 m­jz)

and

c.c.

in order to have

[S1, Dj] 5 0 (2.23b)

One can verify that the diffeomorphism Dj can be expressed as the
anticommutator
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Dj 5 {S1, îj}, j P D0 (2.24)

where S1 is the Slavnov–Taylor operator and îj is the antiderivation defined
by its action on the fields as follows:

îjc 5 j

îjC 5 jz 1 mjz

(2.25)
îjb 5 jzCs

îj(m, X, Xs , Cs) 5 0

For j, j8 P D0, îj satisfies the anticommutation relation

{îj, îj8} 5 0 (2.26)

Furthermore, the antiderivation îj is realized on the functional space by the
functional operator

Jj 5 #
S

dm 1îjC
d

dC
1 îjb

d
db

1 c.c.2 (2.27)

For the diffeomorphism Dj, one can satisfy the following algebra:

[Dj, Dj8] 5 D[j,j8] (2.28a)

[Dj, îj8] 5 î[j,j8] (2.28b)

with j, j8 P D0.
At the functional level Dj is represented by the operator

W(j) 5 #
S

dm 1Djf
d

df
1 c.c.2 (2.29)

where f 5 (X, Xs , C, Cs , m, b), which extends the Ward operator [11] to
the BRST sources, satisfies the diffeomorphism algebra

[W(j), W(j8)] 5 W([j, j8]D0) (2.30)

and the extended Ward identity

W(j)Stot 5 0 (2.31)

Finally, the two symmetries are independent and the total classical action
satisfies the Slavnov–Taylor identity (2.15) and the extended Ward iden-
tity (2.31)).

In the next section we will establish that the operator Jj that was essential
in extending the diffeomorphism action to the BRST sources generates a
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supersymmetric structure of the bosonic string, and then the topological nature
of this model is apparent when the Slavnov symmetry is separated from the
diffeomorphism one [when (2.23) holds].

3. TOPOLOGICAL STRUCTURE OF THE BOSONIC STRING

It is easy to show that the operator Jj can be rewritten as

Jj 5 #
S
Hjz1m

d
dC

1
d

dC
1 Cs

d
db2 1 c.c.J (3.1)

Moreover, one can verify the following relation:

JjStot 5 S1 #
S

dm {j(Cs 1 mCs) 1 j(Cs 1 mCs)} (3.2)

As the measure and the diffeomorphism parameter j are S1-invariant, Eq.
(3.2) can be rewritten as

JjStot 5 #
S

dm [jS1(Cs 1 mCs) 1 jS1(Cs 1 mCs)] (3.3)

Due to the holomorphic factorization apparent in Eqs. (3.1)–(3.3), which is
the important property of the Beltrami parametrization, we get locally the
following identities:

W̃Stot 5 D̃ (3.4)

and

c.c.,

with

W̃ 5 m
d

dC
1

d
dC

1 Cs
d
db

(3.5)

and

D̃ 5 S1(Cs 1 mC) (3.6)

Moreover, by direct calculation one gets

D̃ 5 Xs­X 1 Cs ­C 1 Cs­C 2 b­m 2 b­m (3.7)

However, the integrated expressions for W̃ and D̃ are given by
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W 5 #
S

dm 1m
d

dC
1

d
dC

1 Cs
d
db2 (3.8)

and

D 5 S1 #
S

dm (Cs 1 mC) (3.9)

This is justified in the reference complex structure parametrized by the fixed
Beltrami differential m0 (defining the conformal gauge), which we continue
to label m. Then, we recover the supersymmetric algebra of the bosonic string
introduced in ref. 6 generated by W, W, and S1, which is expressed as

{S1, W} 5 ­ (3.10a)

{S1, W} 5 ­ (3.10b)

{W, W} 5 {W, W} 5 {W, W} 5 0 (3.11)

S 1
2 5 0 (3.12)

Furthermore, the integrated expression (3.9) is recognized as the broken
topological symmetry term in the chiral sector. However, this anomaly is S1-
exact and can be reabsorbed in the total classical action.

On the other hand, one can verify that the total classical action and the
energy-momentum tensor are both S1-exact:

Stot 5 S1 #
S

dm 11
2

XXS 2 CSC 2 CsC2 (3.13)

T [ TZZ 5
dStot

dm
5 S1b (3.14)

and

c.c.

Indeed, these two relations reflect the same characteristic properties of the
Witten-type topological model [3].

Now, let us return to the functional operator Jj in order to establish
the supersymmetric structure on the functional space, i.e., to express the
supersymmetric algebra [Eqs. (3.10)–(3.12)] in terms of the operators Jj, S1,
and W(j).

Indeed, it is easy to verify, for all fields of the model, the following
relation:
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Dj 5 {S1, îj} (3.15)

Then, one can show that this equation is represented, on the functional
space, by

W(j) 5 {S1, Jj} (3.16)

by using the extended Ward and Slavnov–Taylor identities.
Conversely, one can verify that the j and the j components of Eq. (3.16)

imply the anticommutation relations (3.10). Moreover, the independence of
the Slavnov–Taylor symmetry from the diffeomorphism one was based on
the commutation relation [Dj, S1] 5 0, which can be seen to be realized, on
the functional space, by the equation

[W(j), S1] 5 0 (3.17)

from which we deduce

[­, S1] 5 0 5 [­, S1] (3.18)

Then, Eq. (2.26) can be represented by the anticommutation relation

[Jj, Jj8] 5 0 (3.19)

This can be verified from the action of the operators Jj and Jj8 on the total
classical action, which gives Eq. (3.11).

Moreover, the commutation relation (2.28b) is realized by

[W(j), Jj8] 5 J[j,j8]D0
(3.20)

Thus we are able to establish the functional analogue of the supersymmetric
algebra, introduced in ref. 6, of the bosonic string. In other words, we have
shown that this topological structure takes its origin at the gauge-fixed level
and when the independence of the two symmetries of the total classical action
is considered. Hence, this algebra mixes the representatives of the BRST
extension to the sources, the antiderivation and the diffeomorphism gener-
ators.

4. CONCLUSION AND OPEN PROBLEMS

As can be seen from the construction developed here, the equation [Dj,
S1] 5 0 and its representative were the key objects to reflect the topological
symmetry of the bosonic string first-quantized in the BRST formalism.

Then, the separation of the diffeomorphism symmetry from the Slavnov–
Taylor one is possible in the framework of a large symmetry, that is, the
topological symmetry. This idea deserves further investigation.



1984 Kachkachi, Dafounansou, and Nazah

REFERENCES

1. A. S. Schwarz, (1979). Commun. Math. Phys. 67 1; E. Witten, Commun. Math. Phys. 121
(1989) 351.

2. E. Witten, (1988). Commun. Math. Phys. 117 353; (1988). 118 411.
3. D. Birmingham, M. Blau, M. Rakowski, and G. Thompson, (1991). Phys. Rep. 209 129.
4. G. Thompson, In 1991 Summer School in High Energy Physics and Cosmology, Vol. 2,

E. Gava, K. Narain, S. Randjbar-Daemi, E. Sezgin, and Q. Shafi, eds. World Scientific,
Singapore (1992).

5. J. Scherk, (1975). Rev. Mod. Phys. 47 123; M. Green, J. Schwarz, and E. Witten, (1987).
Superstring Theory, Vol. II, Cambridge University Press, Cambridge, E. D’Hoker and D.
H. Phong, (1988). Rev. Mod. Phys. 60 917.

6. M. Werneck de Olivera, M. Schweda, and S. P. Sorella, (1993). Phys. Lett. B 315 9.
7. L. Baulieu, C. Becchi and R. Stora, (1986). Phys. Lett. B 180 55.
8. S. Lazzarini and R. Stora, (1989). Ward identities from Lagrangian conformal models, in

Knots, Topology and Quantum Field Theory, L. Lusanna, ed., World Scientific, Singapore.
9. A. A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov, (1984). Nucl. Phys. B 241 333.

10. A. M. Polyakov, (1981). Phys. Lett. B 103 207.
11. S. Lazzarini, (1990). Doctoral thesis, LAPP Annecy-Le-Vieux.
12. M. Kachkachi, ICTP preprint, IC/99/115, Modern Phys. A 15 417.
13. M. Kachkachi, ICTP preprint, IC/99/166, Modern Phys. B; in press.


